

Wendy Taylor
STT Meeting
Fermilab
September 28, 2001

Matrix Lookup Table Algorithm

$$\phi(r) = \frac{b}{r} + \kappa r + \phi_0, \ \vec{p} = (b, \kappa, \phi_0)$$

- ♦ 3 parameters (p_i)
- 2 CFT hits + 4(3) SMT hits (r_i, ϕ_i)

$$p_i = \sum_j M_{ij} \phi_j, \ M_{ij} = f_i (r_j, \sigma_j)$$

♦ Use 160 ϕ slices (SuperRoads) where $r_j \approx r_{layer}$ to limit number of matrices M_{ij}

CFT/SMT Coordinate LUTs

Radius (50 μm) Barrel Layer Hit φ Field
27..22 21..19 18..16 15..0 Bits

- * SMT LUT stores residual radius (precision, small LUT yields reference radius per layer)
- A Store φ range per TFC (precision, small LUT provides reference φ per TFC): "slight" problem in that φ range currently overflows 16 bits due to ladders extending beyond 37.5°

Lookup Tables Status

- ♦ 12 inverse matrix LUTs, with packed 16 bit integers, one for each TFC
- ♦ 6 SMT coord-conv LUTs, one for each crate → change to 12, one for each TFC
- CFT coord-conv LUTs cover whole detector, stored in DSP data memory
- $^{\bullet}$ P_T bin LUT stored in DSP memory converts curvature κ to P_T bin, for output

Integer Fit Algorithm Status

- ♦ C++ version converted to C for running on DSP - compiles and runs in TI Simulator
- ♦ C++ wrapper provides bit-wise input information expected from FRC and STC and performs SMT coord conversion
- C code compiles within tsim_12stt, and runs: compare 59% tracking efficiency to nominal 67% - known problems remain

Integer Fit Algorithm Tasks

- * Rescale the integer values to fix SMT LUT overflow problem and remove last 3 divisions from χ^2 calculation (flexibility)
- ↑ Handle in wrapper code the case where the FRC track goes to 2 neighboring TFCs
- ♣ Include beam spot correction and impact parameter significance computation
- ♣ Update SMT LUT to handle 7-bit sequencer ID and break sextants into TFCs